If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-2q=8
We move all terms to the left:
q^2-2q-(8)=0
a = 1; b = -2; c = -8;
Δ = b2-4ac
Δ = -22-4·1·(-8)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6}{2*1}=\frac{-4}{2} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6}{2*1}=\frac{8}{2} =4 $
| 8y-12=788 | | -(4x}=3/4(x-6) | | 14p-4p-6p-3p+4p=20 | | 2x-8(x+2)=40 | | 5w^2=15w | | 2x-8(x+12)=40 | | -5u+19u-13u+-12u=11 | | 4x-9=5x+1-x-10 | | 7w+w=72 | | 5h+6h+6=28 | | 7n=17+6n | | -10-5j-6=10+8j | | S=B+1/2Pl | | 12.18+0.13h=12.93-0.12h | | 14p+3p-8p=18 | | 8.4=g/3—-5.4 | | 6-6x=-2x+14 | | 6q-5q=16 | | 36/9x3-8+9=13 | | 6-6x=2x+14 | | z/3+7.1=11.4 | | 10-5k=-10-7k | | 26.00+23.25m=59.00+17.75m | | 2x+2x+2x=4x+2x | | 3x+11=-24 | | 9+4d=5d | | 1.59=y/3-2 | | 0=-4.9x^2+10x+10 | | 2w+w=200 | | 3+3n=9-3n | | 2w+3=200 | | 2m-3=-0.7 |